The **IEEE Standard for Floating-Point Arithmetic** (**IEEE 754**) is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.

IEEE 754-2008, published in August 2008, includes nearly all of the original IEEE 754-1985 standard, plus the IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic. The current version, IEEE 754-2019, was published in July 2019.[1] It is a minor revision of the previous version, incorporating mainly clarifications, defect fixes and new recommended operations.

The first standard for floating-point arithmetic, IEEE 754-1985, was published in 1985. It covered only binary floating-point arithmetic.

A new version, IEEE 754-2008, was published in August 2008, following a seven-year revision process, chaired by Dan Zuras and edited by Mike Cowlishaw. It replaced both IEEE 754-1985 (binary floating-point arithmetic) and IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic. The binary formats in the original standard are included in this new standard along with three new basic formats, one binary and two decimal. To conform to the current standard, an implementation must implement at least one of the basic formats as both an arithmetic format and an interchange format.

The international standard **ISO/IEC/IEEE 60559:2011** (with content identical to IEEE 754-2008) has been approved for adoption through JTC1/SC 25 under the ISO/IEEE PSDO Agreement[2] and published.[3]

The current version, IEEE 754-2019 published in July 2019, is derived from and replaces IEEE 754-2008, following a revision process started in September 2015, chaired by David G. Hough and edited by Mike Cowlishaw. It incorporates mainly clarifications (e.g. totalOrder) and defect fixes (e.g. minNum), but also includes some new recommended operations (e.g. augmentedAddition).[4][5]

The international standard **ISO/IEC 60559:2020** (with content identical to IEEE 754-2019) has been approved for adoption through JTC1/SC 25 and published.[6]

An IEEE 754 format is a "set of representations of numerical values and symbols". A format may also include how the set is encoded.[7]

For example, if b = 10, p = 7, and emax = 96, then emin = −95, the significand satisfies 0 ≤ c ≤ 9999999, and the exponent satisfies −101 ≤ q ≤ 90. Consequently, the smallest non-zero positive number that can be represented is 1×10−101, and the largest is 9999999×1090 (9.999999×1096), so the full range of numbers is −9.999999×1096 through 9.999999×1096. The numbers −b1−emax and b1−emax (here, −1×10−95 and 1×10−95) are the smallest (in magnitude) normal numbers; non-zero numbers between these smallest numbers are called subnormal numbers.