Obr.	1—1 Schéma stávajících nádrží Vltavské kaskády	. 1-3
Obr.	1—2 Přehledný podélný profil nádrží Vltavské kaskády dle PVL (výškový systém Jadran)	. 1-4
Obr.	1—3 Příčný řez blokem bezpečnostního přelivu VD Orlík.	. 1-5
Obr.	1—4 Příčný řez blokem bezpečnostního přelivu VD Kamýk	. 1-5
	1—5 Příčný řez blokem bezpečnostního přelivu VD Slapy	
Obr.	1—6 Příčný řez blokem bezpečnostního přelivu VD Štěchovice	. 1-7
	1—7 Příčný řez blokem jezu VD Vrané	
Obr.	1—8 Definiční schéma nádrže (VD Orlík) a navazujících hydrologických systémů	. 1-9
	1—9 Definiční schéma vodního díla Orlík, zahrnující 6 objektů regulace odtoku	
	1—10 Stavové veličiny modelu nádrže. Definiční schéma modelu RES	
	1—11 Stavové veličiny ostrohranného přelivu MS3. Definiční schéma modelu	
	1—12 Čára objemů pro VD Orlík.	
Obr.	1—13 Čára zatopených ploch pro VD Orlík.	1-15
	1—14 Průběh nastavení přelivů VD Orlík odvozený ze známé hladiny v nádrži a průtoku objel	
	během povodně v srpnu 2002	
	1—15 Simulace č. 1 - výpočet přítoku z průběhu známých hladin a odtoku – SETHQ	
	1—16 Simulace č.2 - výpočet odtoku z průběhu známých hladin a přítoku – SETHI	
	1—17 Simulace č. 3 - výpočet průběhu hladin ze známého přítoku a odtoku – SETQI	
	1—18 Simulace č. 4. b – výpočet odtoku s použitím měrných křivek přelivů (volný přeliv)	
	1—19 Simulace č. 4. c - výpočet odtoku na základě měřených průtoků výpustmi, přeliv	-
	elektrárnou. Zanedbány jsou živelné odtoky.	
	1—20 Simulace č. 6 - výpočet odtoku na základě měrných křivek a nastavení. Zanedbány živelné odtoky.	
Ohr	1—21 Průběh nastavení přelivů VD Kamýk odvozený ze známé hladiny v nádrži a prů	toku
	objektem během povodně v srpnu 2002	
	1—22 Simulace č.6.a Odtok z VD Kamýk na základě měrných křivek přelivů, nastavení a znán	
	průtoku elektrárnou.	
Obr	1—23 Simulace č.6.b - VD Kamýk na základě měrných křivek, nastavení a známého prů	toku
001.	elektrárnou.	1-35
	1—24 Průběh nastavení přelivů VD Slapy odvozený ze známé hladiny v nádrži a průtoku objel	
	během povodně v srpnu 2002	
	1—25 Simulace č. 1 - výpočet přítoku z průběhu známých hladin a odtoku – SETHQ	
	1—26 Simulace č.2 - výpočet odtoku z průběhu známých hladin a přítoku – SETHI	
	1—27 Simulace č. 3 - výpočet průběhu hladin ze známého přítoku a odtoku– SETQI	
	1—28 Simulace č.6 – výpočet odtoku na základě měrných křivek přelivů a výpustí v kombi	
	s nastavením	
	1—29 Simulace č. 1 - výpočet přítoku z průběhu známých hladin a odtoku – SETHQ	
	1—30 Simulace č.2 - výpočet odtoku z průběhu známých hladin a přítoku – SETHI	
	1—31 Simulace č. 3 - výpočet průběhu hladin ze známého přítoku a odtoku – SETQI	
	1—32 Simulace č.6.a - výpočet odtoku na základě měrných křivek přelivů a výpustí v kombi	
		1-52
	1—33 Simulace č.6.b - výpočet odtoku na základě měrných křivek přelivů a výpustí v kombi	inaci
:	s nastavením	1-53
	1—34 Simulace č.4 – odtok z VD Vrané varianta a.	
Ohr	1—35 Simulace č 4 – odtok z VD Vrané varianta b :	1-58

Obr.	2—1 Porovnání bilančního přítoku, přítoku dle ČHMU a simulovaného přítoku modelem AquaLog
	do VD Orlík
	2—2 Povodí a mezipovodí Vltavské kaskády
	2—3 Schéma modelu Vltavské kaskády pro vyhodnocení průtoku povodňové vlny
Obr.	2—4 Rozložení srážkoměrných stanic pro kalibraci (v případě existence limnigrafické stanice)
	povodí Vltavské kaskády, které nebyly dosud zahrnuty v HPS ČHMÚ
Obr.	2—5 Hydrogramy průtoků generované modelem HPS pro profil Písek, České Budějovice, Bechyně
	přítok do VD Orlík, přítok do VD Orlík bilanční PVL a přítok do VD Orlík dle ČHMÚ2-69
Obr.	2—6 Porovnání odtoku z VD Orlík na základě dat PVL a výpočtu AquaLogem z přítoku do VD na
	základě ne-updatovaných srážko-odtokových modelů
	2—7 Porovnání průtoků pod VD Vrané
Obr.	2—8 Porovnání odtoku z VD Orlík na základě dat PVL a výpočtu AquaLogem z přítoku do VD na
	základě přítoku ČHMÚ
Obr.	2—9 Porovnání průtoků pod VD Vrané
Obr.	2—10 Porovnání průtoků pod VD Vrané. Průtok označený AquaLog byl spočítán na základě
	bilančního přítoku do VD Orlík od PVL 2-79
Obr.	2—11 Porovnání všech variant výpočtu průtoku pod VD Vrané
Obr.	3—1 Varianta 1a – simulace průběhu povodně na VD Orlík pro počáteční hladinu v nádrži 345.6
	m.n.m. 5.8 2002 v 7:00 hod
Obr.	3—2 Varianta 1b – simulace průběhu povodně na VD Orlík pro počáteční hladinu v nádrži 345.6
	m.n.m. 5.8 2002 v 7:00 hod
Obr.	3—3 Varianta 1c – simulace průběhu povodně na VD Orlík pro počáteční hladinu v nádrži 345.6
	m.n.m. 5.8. 2002 v 7:00 hod. V době kulminace byly obě dvě výpusti otevřeny 3-91
Obr.	3—4 Varianta 1d – simulace průběhu povodně na VD Orlík pro počáteční hladinu v nádrži 345.6
	m.n.m. 5.8. 2002 v 7:00 hod. V době kulminace byly obě dvě výpusti otevřeny 3-92
Obr.	3—5 Varianta 2a - simulace průběhu povodně na VD Orlík pro počáteční hladinu v nádrži 347.6
	m.n.m. 5.8 2002 v 7:00 hod
Obr.	3—6 Varianta 2b – simulace průběhu povodně na VD Orlík pro počáteční hladinu v nádrži 347.6
	m.n.m. 5.8 2002 v 7:00 hod. V době kulminace byly obě dvě výpusti otevřeny
Obr.	3—7 Varianta 3a - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1500 m ³ .s
	3-95
Obr.	3—8 Varianta 3b - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1700 m ³ .s
	3-96
Obr.	3—9 Varianta 3c Varianta 3c Simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze
	2000 m ³ .s ⁻¹
Obr.	3—10 Varianta 3d - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1700
	m ³ .s ⁻¹ , došlo k odstavení elektrárny 3-98
Obr.	3—11 Varianta 3e- simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 2000 m ³ .s
	¹ , došlo k odstavení elektrárny 3-99
Obr.	3—12 Varianta 3f - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1700
	m ³ .s ⁻¹ , nedošlo k odstavení elektrárny
Obr.	3—13 Varianta 3g - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 2000
	m ³ .s ⁻¹ , nedošlo k odstavení elektrárny
Obr.	3—14 Varianta 3h - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1700
	m ³ .s ⁻¹ , došlo k odstavení elektrárny
Obr.	3—15 Varianta 3i- simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 2000 m ³ .s
	¹ , došlo k odstavení elektrárny 3-103
Obr.	3—16 Varianta 3j - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1700
	m ³ .s ⁻¹ , nedošlo k odstavení elektrárny
Obr.	3—17 Varianta 3k - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 2000
	m ³ .s ⁻¹ , nedošlo k odstavení elektrárny
Obr.	3—18 Varianta 31 - simulace odtoku z VD Orlík – zachování neškodného průtoku v Praze 1500
	m³ s-¹ došlo k odstavení elektrárny

Obr.	. 3—19 Varianta 3m - simulace odtoku z VD Orlík – zachování neškodného průtoku v m³.s ⁻¹ , došlo k odstavení elektrárny	
Ohr	. 3—20 Varianta 3n - simulace odtoku z VD Orlík – zachování neškodného průtoku v	
OUI.		
Olam	m ³ .s ⁻¹ , došlo k odstavení elektrárny	
Obr.	. 3—21 Varianta 4– simulace průběhu povodně na VD Orlík. Manipulace byly provádě	
01	nedošlo k poklesu odtoku mezi oběma vlnami.	
Obr.	. 3—22 Varianta 5a – simulace průběhu povodně na VD Orlík za předpokladu, že nedošl	
01	elektrárny.	
Obr.	. 3—23 Varianta 5b – simulace průběhu povodně na VD Orlík za předpokladu, že nedošl	
0.1	elektrárny a obě výpusti byly v době kulminace otevřeny.	
	. 3—24 Průběh odtoku z VD Orlík pro varianty1a – 3d.	
	. 3—25Průběh odtoku z VD Orlík pro varianty 3e – 5b.	
	. 3—26 Průběh hladin VD Orlík pro jednotlivé varianty.	
	. 3—27 Průběh průtoku pro profil Chuchle varianty1a-5b, kromě variant 3	
	. 3—28 Průběh průtoku pro profil Chuchle varianty 3a – 3k	
	. 3—29 Varianta 1a – simulace průběhu povodně na VD Slapy	
	. 3—30 Varianta 1b – simulace průběhu povodně na VD Slapy	
	. 3—31 Varianta 1c – simulace průběhu povodně na VD Slapy	
	. 3—32 Varianta 1d – simulace průběhu povodně na VD Slapy	
	. 3—33 Varianta 2a – simulace průběhu povodně na VD Slapy	
Obr.	. 3—34 Varianta 2b – simulace průběhu povodně na VD Slapy	3-119
Obr.	. 3—35 Varianta 3a – simulace průběhu povodně na VD Slapy	3-120
Obr.	. 3—36 Varianta 3b – simulace průběhu povodně na VD Slapy	3-120
Obr.	. 3—37 Varianta 3c – simulace průběhu povodně na VD Slapy	3-121
Obr.	. 3—38 Varianta 3d – simulace průběhu povodně na VD Slapy	3-121
Obr.	. 3—39 Varianta 3e – simulace průběhu povodně na VD Slapy	3-122
Obr.	. 3—40 Varianta 3f – simulace průběhu povodně na VD Slapy	3-122
	. 3—41 Varianta 3g – simulace průběhu povodně na VD Slapy	
Obr.	. 3—42 Varianta 3h – simulace průběhu povodně na VD Slapy	3-123
Obr.	. 3—43 Varianta 3i – simulace průběhu povodně na VD Slapy	3-124
Obr.	. 3—44 Varianta 3j – simulace průběhu povodně na VD Slapy	3-124
	. 3—45 Varianta 3k – simulace průběhu povodně na VD Slapy	
	. 3—46 Varianta 31 – simulace průběhu povodně na VD Slapy	
	. 3—47 Varianta 3m – simulace průběhu povodně na VD Slapy	
	. 3—48 Varianta 3n – simulace průběhu povodně na VD Slapy	
	3—49 Varianta 4 – simulace průběhu povodně na VD Slapy	
	. 3—50 Varianta 5a – simulace průběhu povodně na VD Slapy	
	. 3—51 Varianta 5b – simulace průběhu povodně na VD Slapy	
	. 3—52 Přehled měrných profilů, hlavních přítoků model a hrázových profilů	
	. 3—53 Zavedení akumulačních zón a Preismanovy štěrbiny do geometrie koryta	
	. 3—54 Automatická interpolace terénu mezi dvěma příčnými řezy koryta	
	. 3—55 Příklad vzdutí nádrží Orlík a Hněvkovice při hydrodynamickém řešení.	
	. 3—56 Ukázka podélného profilu Vltavy v úseku Štěchovice – Helmovský jez	
	. 3—57 Odvození kumulativního rozdělení průtoků v trati České Budějovice – Praha. P	
001.	základní geometrie modelu (133 příčných profilů a podélného profilu v řešeném ús	
	Budějovice-Praha Helmovský jez) bylo při kalibraci postupováno podle obecných zásad:	
Ohr	. 3—58 Detekce chybně zaměřeného příčného profilu v Km 62.830 (Lahovice)	
	. 3—59 Ukázka citlivosti řešení na hodnotu drsnostního součinitele: v horní části obráz	
OUI.	odhad n=0. 03 pro všechny příčné řezy úseku Modřany – Davle, v dolní části výst	
	nakalibrovaného na hladinu v září 1980	
Ohr	. 3—60 Porovnání zaměřené hladiny povodně v září 1890 s výpočtem ustáleného stavu, Va	
OUI.	. 5—60 Porovnam zamerene madiny povodne v zari 1890 s vypoctem ustaleneno stavu, va 142	11 1 1 1 1 . 3 -
Ohr	142 . 3—61 Současná konfigurace modelu ve variantě 2b, podélný profil	2 145
OUI.	. 5—01 Soucasha konfigurace moderu ve variante 20, podemy prom prom	3-143

Obr. 3—62. Chuchle Km 58.700, povodeň srpen 2002, měření a vypočtené neov	^r livněné průtoky v
období kulminace Varianty 3 a 4	3-153
Obr. 3—63 Chuchle Km 58.700, povodeň srpen 2002, měření a vypočtené neovlivr	něné vodní stavy v
období kulminace Varianty 3 a 4	3-154
Obr. 3—64 Profily České Budějovice, Km 240.605 a dnešní hráz Hněvkovice, Km	213.313, povodeň
srpen 2002, Var.2, průtoky	
Obr. 3—65 Profily Zvíkova a dnešních hrází Orlík a Kamýk, povodeň září 1890,	Var. 1b průtoky a
vodní stavy	3-156
Obr. 3-66 Nádrž Orlík v Km 143.600 (pf hráze) a v Km 163.897 (pf přítoku), pov	vodeň srpen 2002,
porovnání Variant 2	3-157
Obr. 3—67 Nádrž Orlík v Km 143.600 (pf hráze) a v Km 172.72 (pf Zvíkov), porovná	ní Variant 3 3-158
Obr. 3—68 Analýza transformační funkce nádrže a původního koryta v úseku Hněvkov	rice – Orlík hráz 3-
159	
Obr. 3—69 Nádrž Slapy n.Vlt., Km 91.794, povodeň srpen 2002, porovnání Variant 2	3-160
Obr. 3—70 Soutoky Vltava-Sázava a Vltava-Berounka, povodeň září 1890, Var. 1b	průtoky a vodní
stavy	3-161
Obr. 3—71 Berounka, soutok s Vltavou, ověření vodní bilance, Km 63.154 Varianta 2a	a 3-162
Obr. 3—72, Zbraslav, Km 65.694, povodeň srpen 2002, porovnání Variant 2	
Obr. 3—73 Zbraslav, Km 65.694, povodeň srpen 2002, průtoky a vodní stavy, výpočet	Varianty 3a 3-164
Obr. 3—74 Zbraslav, Km 65.694, povodeň srpen 2002, průtoky a vodní stavy, výpočet	Varianty 4a 3-165
Obr. 3—75 Chuchle, Km 58.700, povodeň srpen 2002, průtoky a vodní stavy, porovná	ní Variant 2 3-166
Obr. 3—76 Chuchle, Km 58.700, povodeň srpen 2002, průtoky a vodní stavy, výpočet	Varianty 3a 3-167
Obr. 3—77 Chuchle, Km 58.700, povodeň srpen 2002, průtoky a vodní stavy, výpočet	Varianty 4a3-168
Obr. 4—1 Interaktivní program na vstup průtoků, vodních stavů a manipulací během vý	počtu 4-174
Obr. 4—2 Schéma modelu kaskády	4-175
Obr. 7—1 VD Orlík, konsumční křivka výtoku pod segmentem	
Obr. 7—2 VD Kamýk, konsumční křivka výtoku pod segmentem	
Obr. 7—3 VD Slapy, konsumční křivka výtoku pod segmentem	
Obr. 7—4 VD Štechovice, konsumční křivka výtoku pod segmentem	7-200

Seznam tabulek

Tab. 1-1 Základní hladiny vodních děl na střední a dolní Vltavě dle PVL (B.p.v.)	1-2
Tab. 1-2 Varianty výpočtu z pohledu základních stavových veličin	1-11
Tab. 1-3 Rekapitulace charakteristik VD Vltavské kaskády uvedených v manipulačních	řádech
jednotlivých VD a skutečnosti, které nastaly během srpnové povodně 2002.	
Tab. 1-4 Popis základních schémat sestavení jednotlivých nádrží Vltavské kaskády	
Tab. 1-5 Extrapolovaná konzumční křivka volného přepadu VD Orlík	
Tab. 1-6 Extrapolovaná konzumční křivka spodní výpusti VD Orlík	
Tab. 1-7 Výpočtové varianty pro VD Orlík	
Tab. 1-8 Úrovně vybraných hladin VD Orlík	
Tab. 1-9 Porovnání odtoku z VD Orlík pro variantu 6.	1-19
Tab. 1-10 Extrapolovaná měrná křivka přelivů VD Kamýk	
Tab. 1-11 Výpočtové varianty pro VD Kamýk	
Tab. 1-12 Úrovně vybraných hladin VD Kamýk	
Tab. 1-13 Porovnání odtoku z VD Kamýk pro variantu 6.	
Tab. 1-14 Extrapolovaná měrná křivka přelivů VD Slapy	
Tab. 1-15 Extrapolovaná měrná křivka výpustí VD Slapy	
Tab. 1-16 Výpočtové varianty pro VD Slapy	
Tab. 1-17 Úrovně vybraných hladin a velikost ochranného prostoru VD Slapy	
Tab. 1-18 Porovnání odtoku z VD Slapy pro variantu 6	
Tab. 1-19 Extrapolovaná měrná křivka přelivů VD Štěchovice	
Tab. 1-20 Výpočtové varianty pro VD Štěchovice	
Tab. 1-21 Úrovně vybraných hladin VD Štěchovice	1-46
Tab. 1-22 Porovnání odtoku z VD Štěchovice pro variantu 6.a a 6.b.	
Tab. 1-23 Extrapolovaná konzumční křivka jezového pole VD Vrané	
Tab. 1-24 Výpočtové varianty pro VD Vrané	
Tab. 1-25 Úrovně vybraných hladin a velikost ochranného prostoru VD Vrané	
Tab. 1-26 Porovnání variant odtoku pro VD Vrané	
Tab. 2-1 Porovnání bilančního přítoku do VD Orlík a přítoku získaného s-o modely	
Tab. 2-2 Porovnání měřeného průtoku s výsledky simulací s různými okrajovými podmínkami	
Tab. 2-3 Charakteristiky povodí s odtokem do Vltavské kaskády	
Tab. 2-4 Porovnání průtoků pod VD Vrané	
Tab. 2-5 Porovnání přítoku a odtoku VD Orlík pro bilanční přítok PVL a odvozený přítok ČHMÚ	2-74
Tab. 2-6 Porovnání průtoků pod VD Vrané	
Tab. 3-1 Varianty výpočtu průtoku povodňové vlny vodním dílem Orlík	
Tab. 3-2 Základní charakteristiky variant (VD Orlík)	
Tab. 3-3 Základní charakteristiky variant (profil Chuchle)	3-88
Tab. 3-4 Počáteční hladina v nádrži	
Tab. 3-5 Přehled variant aplikace modelu HEC-RAS	
Tab. 3-6 Tab. Hodnoty kumulativní rozdělení průtoků v podélném profilu při simulaci ustálených s	
139	
Tab. 3-7 Průběhy simulovaných a měřených hladin v okolí vodočtu Praha-Chuchle při povodni	v září
1890. Varianty 1a a 1b kalibrace modelu.	
Tab. 3-8 Podklady pro výpočet přelivů vodních děl modelu HEC-RAS	. 3-144
Tab. 3-9 Přehled kulminačních průtoků v úseku Č. Budějovice – Hněvkovice	. 3-146
Tab. 3-10 Přehled kulminačních průtoků v podélném profilu nádrže Orlík.	
Tab. 3-11 Numerický test vodní bilance v okolí soutoku Sázavy s Vltavou	

Tab. 3-12 Analýza bilance přítoku a měření v dolním závěrovém profilu modelu (Chuchle)	3-148
Tab. 3-13 Analýza bilance na soutoku Berounky s Vltavou	3-149
Tab. 3-14 Výsledky výpočtu variant ve vodoměrném profilu Chuchle, Km 58.700	
Tab. 3-15 Přehled měrných a hrázových profilů modelu, bočních přítoků a přítoků z mezipovod	
151	
Tab. 4-1 Porovnání variant výpočtu Vltavské kaskády	4-171
Tab. 4-2 Výpočtové schéma VD Orlík jako samostatná jednotka makrotopografie systému	4-172
Tab. 4-3 Mezo-topografie modelu Vltavské kaskády	4-173
Tab. 7-1 Vstupní data ČHMÚ	
Tab. 7-2 Vstupní data ČHMÚ	7-185
Tab. 7-3 Vstupní data PVL	
Tab. 7-4 Vstupní data PVL	7-186
Tab. 7-5 Vstupní data PVL	7-187
Tab. 7-6 ID kódy AquaLogu pro vodní stavy VD	7-188
Tab. 7-7 ID AquaLogu pro měření průtoku	7-188
Tab. 7-8 ID kód AquaLogu pro srážkoměrné stanice použité pro kalibraci	7-189
Tab. 7-9 Charakteristiky povodí HPS Berounka	7-190
Tab. 7-10 Charakteristiky povodí HPS Otava	7-191
Tab. 7-11 Charakteristiky povodí HPS Vltava nad VD Orlík	7-192
Tab. 7-12 Charakteristiky povodí HPS Sázava	7-192
Tab. 7-13 Přehled srážko-odtokových modelů Vltavské kaskády	7-195
Tab. 7-14 Seznam vstupů pro variantu modelu 1	7-196